
11. NUMERICAL TECHNIQUES 

 

Abstract —A general and precise method to model rotary 
machines using transient magnetic field finite-element method 
(FEM) is presented. The merits of the proposed methods are 
that the nonlinear iteration on the rotor position is 
unnecessary and its accuracy is guaranteed. A curvilinear 
element is used in the two sides of the sliding surface to reduce 
the numerical noise arising from mesh rotation. The proposed 
methods to deal with matching boundary conditions and 
periodic boundary conditions are very general, accurate and 
flexible.  

I. INTRODUCTION 
For simulation of rotary machines, it is necessary to 

deal with issues concerning the relative movements 
between stator and rotor. If the mechanical balance 
equation is coupled into the system equation, the rotor 
position is an unknown during nonlinear iterations at each 
step [1]. This means the stator mesh and rotor mesh should 
be re-connected at each step of nonlinear iteration. Such 
requirement is very complex in implementation and may 
also lead to divergence. The traditional method is to use the 
last step’s rotor position as the rotor position of the current 
step. However there is a one step delay in the rotor position 
with this approach. If triangular or quadrilateral element is 
used and the rotor moves, the mesh elements in the two 
sides of the sliding interface may also overlap, albeit only 
slightly, and numerical errors will appear. In order to deal 
with the connection of the stator and rotor meshes, several 
methods such as shifting the nodes, modifying the mesh or 
re-meshing the airgap can be employed. A macro element 
in the airgap can also be used [2]. The demerit is that a 
special formulation for the airgap should be developed. 
Alternatively, one can map the nodes on one side (say in 
the rotor) to the other side (say in the stator) [3]. The 
challenge of this method is to find the best means in order 
to retain an accurate continuity of the fields between the 
two sides of the sliding surface.    

In this paper, a general method to model the rotational 
problems is presented. The rotor’s position is predicted 
from the last step and the predicted position has a third-
order precision; after the solution of the current step is 
obtained, the position is then modified. By using this 
method, the rotor’s position is pre-determined before each 
time step and its accuracy is guaranteed. A curvilinear 
element is used along the sliding surface of the rotary 
movement. The number of nodes on the periodic boundary 
conditions can be different. Between the moving objects 
and the stationary objects, a matching boundary method is 
used. A general, accurate and flexible method to determine 
the transformation matrix between the slave and master 

nodes is presented. The merit of this method is that the 
position of the points on the sliding surface, on which the 
solutions on the two sides are kept the same, can be chosen 
arbitrarily and are independent of the nodes of the meshes.   

II. PREDICTION OF ROTOR POSITION 
The rotor position kθ is predicted from the last step. 

After the field is solved, the corrected values of 
acceleration, speed and position are: 
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The corrected value of the position at the current time 
step is used to predict the new position for the next (k+1)th 
time step: 

     
)(

)(
4

)(
2

)( 13121
11

k

kkk
k

k
kkkk

t
aatatt

Δ
−Δ

+
Δ

+Δ+≈
−++

++ ωθθ  .        (2) 

The proposed method has a higher order precision when 
compared to that from traditional methods using the 
formula. 

III. CURVILINEAR ELEMENT FOR SLIDING SURFACE 
Curvilinear elements on the two sides of the sliding 

surface are proposed. Using isoparametric second-order 
curvilinear elements, six points are required to transform 
the global coordinates to local coordinates. This allows the 
edges of the elements to be curvilinear. The coordinates 
and the magnetic potential are modeled by the same shape 
function. 
IV. A GENERAL METHOD FOR TRANSFORMATION MATRIX 

OF MATCHING BOUNDARIES 
For simplicity, a simple case as shown in Fig. 1 is taken 

as an example to describe the proposed method. Between 
the moving objects and the stationary objects, there is a 
sliding surface. If the nodes are on the moving objects on 
the sliding surface, these nodes are referred as master nodes; 
if the nodes belong to the stationary objects, these nodes are 
referred as the slave nodes. The variables on the master 
nodes will be solved; the variables on the slave nodes are 
dependent on those on the mater nodes. 

              

S0 S1 S2

ζ=0/3
Slave
S=4

S3

ζ=1/3 ζ=2/3 ζ=3/(S-1)=3/3=1

Master
M=3 ζ=0

M0 M1 M2

ζ=1  
Fig. 1.  A matching boundary condition. 
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Supposing there are 4 nodes on the slave surface, the 
magnetic potential on any position on the slave surface is 

 )()()()()( 33221100 SSSSSSSSS ANANANANA ζζζζζ +++= .    (3) 
Four points are uniformly taken on the slave surface. 

On these 4 points, one has 
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Similarly, supposing there are 3 nodes on the master 
surface, the magnetic potential on any position on the 
master is 

221100 )()()()( MMMMMMM ANANANA ζζζζ ++= .          (5) 
The four points are still uniformly taken on the master. 

On these 4 points, one has 
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On the sliding surface, one has: 
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That means: 
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Each column of the transformation matrix [ ] [ ] MSMSSS NN ×
−
×
1  

can be calculated by solving: 
[ ] [ ] [ ]

onlycolumn  one3210 MSM
T

SSS NxxxxN ×× = .    (9) 

A matrix solver which can deal with multi RHS can be 
used to solve such problem.  

V. NUMERICAL EXPERIMENTS 

A. A Simple Example to Show Accuracy Improvement 
An example in Fig. 2 is used to study the numerical 

errors from the rotor rotation. To enlarge the numerical 
error for comparison, a coarse mesh with 4152 triangles is 
used. When the rotor rotates, the coil should theoretically 
have no induced electromagnetic force. But because of 
numerical error, the computed electromagnetic force in the 
coil is not exactly equal to zero. In this study the rotor 
rotates at the speed of 360 degrees/s. A small time step size 
of 0.001s is used to pick up all numerical noises. The 
computed electromagnetic forces using the proposed 
method and the traditional method are shown in Figs. 3 and 
4, respectively. In both cases the mesh density is the same. 
It can be seen that the numerical error of the new method is 
about 130 times less than that of the traditional method. 

 
Fig. 2.  A simple example to detect the numerical error from mesh rotation. 

 
Fig. 3.  The computed emf using proposed method. 

 
Fig. 4.  The computed emf using traditional method. 

B. An Example of Induction Motor 
The Team Workshops Problem No. 30 [4], which is a 

three-phase solid-rotor induction motor (IM), is taken as the 
illustrating example to verify the validity of the proposed 
method. The calculated phase voltage with the proposed 
method and the analytical results are compared in Fig. 5. It 
is shown that the differences between the analytical results 
and the proposed FEM method are acceptably small.  
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Fig. 5.  Comparison of emf results. 

VI. REFERENCES 
[1] S. L. Ho, H. L. Li, W. N. Fu and H. C. Wong, “A novel approach to 

circuit-field-torque coupled time stepping finite element modeling of 
electric machines,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1886-1889, 
July 2000.  

[2] E. Schmidt, H. De Gersem, T. Weiland, “Application of a 
computationally efficient air-gap element within the finite element 
analysis of magnetic bearings,”  IEEE Trans. Magn., vol. 42, no. 4, 
pp. 1263-1266, April 2006. 

[3] Rémy Perrin-Bit and Jean Louis Coulomb, “A three dimensional 
finite element mesh connection for problems involving movement,” 
IEEE Trans. Magn., vol. 31, no. 3, pp. 1920-1923, May 1995. 

[4] K. R. Davey. International TEAM Workshop Problem 30a - 
Induction Motor Analysis [Online]. Available: 
http://www.compumag.co.uk/team. html 

 


